EFFECTS OF CHITOSAN AND SALICYLIC ACID ON PHYSIOLOGICAL CHARACTERISTICS OF EGGPLANT (Solanum melongena)
Downloads
License
Copyright (c) 2021 KnowEx Food & Agriculture
This work is licensed under a Creative Commons Attribution 4.0 International License.
Eggplant (Solanum melongena) falls under the fruit species under the family of Solanaceae. It is grown widely throughout tropical and subtropical Zones in the world. It is a good source of phenolics, flavonoids, vitamins, calcium and protein. Due to its high nutritional properties, the demand for eggplant is increasing annually. However, due to limited planting space, it is difficult for the producers to increase the production in order to meet the demand. Thus, the objective of this study is to improve the growth and development of selected physiological characteristics of eggplant with chitosan and salicylic acid. The experiment was carried out in factorial randomized complete block design (RCBD) with 4 replications. This experiment was conducted at Field 15, Universiti Putra Malaysia. The plants were treated with chitosan and salicylic acid at four different rates; 0, 2, 4 and 6 ml/L for chitosan and 0, 50, 100 and 150 mg/L for salicylic acid. The treatments were applied either alone or in combination. Results revealed that the application of chitosan combined with salicylic acid influenced the physiological characteristics of the eggplant compared to the control group. Combination of 4 ml/L chitosan with 150 mg/L salicylic acid gave the highest mean values of plant height (107.13 cm), number of branches (14.91), number of leaves (136.08), total number of flowers per plant (101.8), compared to other treatments. Therefore, due to cost effectiveness and better impact on physiological characteristics the combination of 4 ml/L chitosan and 150 mg/L salicylic acid as foliar fertilizer is recommended to improve the growth and development of eggplant.
Abbasi, F., Khaleghi, A. and Khadivi, A. The Effect of Salicylic Acid on Physiological and Morphological Traits of Cucumber (Cucumis sativus L. Cv. Dream). Gesunde Pflanzen 72, 155–162 (2020). DOI10.1007/s10343-019-00496-0
Abreu, M. E., and Munné-Bosch, S. (2009). Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of experimental botany, 60(4), 1261–1271. DOI 10.1093/jxb/ern363
Afsana, N., Islam, M. M., Hossain, M. E., Nizam, R., Monalesa, N., Hussain, M. A., and Parvin, S. (2017). Response of Tomato (Solanum lycopersicum L.) to Salicylic Acid and Calcium. Journal of Applied Life Sciences International, 1-7. DOI 10.9734/JALSI/2017/37408.
Akter, J., Jannat, R., Hossain, M., Uddin, J., and Rubayet, T. (2018). Chitosan for Plant Growth Promotion and Disease Suppression against Anthracnose in Chili. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 3(3), 806–817. DOI 10.22161/ijeab/3.3.13.
Amanullah, M. M., Sekar, S., and Vincent, S. (2010). Plant growth substances in crop production: a review. Asian Journal of Plant Sciences, 9(4), 215-222. DOI 10.3923/ajps.2010.215.222
Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., & Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biology, 3(2), 203–230. DOI 10.2174/2212796810903020203
Ashraf, M. H. P. J. C., and Harris, P. J. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163-190. DOI 10.1007/s11099-013-0021-6.
Aziz, M. A., Esyanti, R., Meitha, K., Dwivany, F., and Chotimah, H. n.d. (2020), Chitosan suppresses the expression level of WRKY17 on red chili (Capsicum annuum) plant under drought stress. DOI10.22146/ijbiotech.55016.
Basudan, N. (2018). Phytochemical composition, of Solanum melongena, Solanum melongena L. and its correlation with bioactive compounds. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(4), 479. https://www.rjpbcs.com/pdf/2018_9(4)/[60].pdf.
Mariano-Nasser , D.C.F. A., Borges, C. V., Ramos, J. A., Nasser, M. D., Lundgren, G. A., Furlaneto, K. A. Vieites, R. L. (2019). Bioactive compounds and enzymatic activity in minimally processed eggplant packed underactive modified atmosphere. Semina: Ciencias Agrarias, 40(1), 139–148. DOI 10.5433/1679-0359.2019v40n1p139.
Dempsey, D.A., Klessig, D.F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biol 15, 23. DOI 10.1186/s12915-017-0364-8.
Docimo, T., Francese,G., Ruggiero,A., Batelli,G.,De Palma,M., Bassolino, L., (2016). Phenylpropanoids accumulation in eggplant fruit: characterization of biosynthetic genes and regulation by a MYB transcription factor. Front. Plant Sci. 6:1233. DOI 10.3389/fpls.2015.01233.
El-Amerany, F., Rhazi, M., Wahbi, S., Taourirte, M., and Meddich, A. (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261, 109015. DOI10.1016/j.scienta.2019.109015.
El-Mageed, T. A., Semida, W. M., Mohamed, G. F., and Rady, M. M. (2016). Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological–anatomical responses, and yield of squash plants under saline soil. South African Journal of Botany, 106, 8-16. DOI 10.1016/j.sajb.2016.05.005.
El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., and Metwally, A. A. (2013). Response of strawberry plants to foliar spraying of chitosan. Res. J. Agric. Biol. Sci, 9(6), 366-372. http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2013/366-372.pdf.
El-Yazeid, A. A. (2011). Effect of foliar application of salicylic acid and chelated zinc on growth and productivity of sweet pepper (Capsicum annuum L.) under autumn planting. Research journal of agriculture and biological sciences, 7(6), 423-433. https://www.researchgate.net/publication/273121142.
Esyanti, R. R., Dwivany, F. M., Mahani, S., Nugrahapraja, H., and Meitha, K. (2019). Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper ('Capsicum annuum'L.). Australian Journal of Crop Science, 13(1), 55. DOI: 10.21475/ajcs.19.13.01.p1169.
FAO. 2018. The statistical database (FAOSTAT). Website http://www.fao.org/faostat/en/. [Accessed 21 August 2020].
Gisbert, C., Dumm, J. M., Prohens, J., Vilanova, S., and Stommel, J. R. (2016). A spontaneous eggplant (Solanum melongena L.) color mutant conditions anthocyanin-free fruit pigmentation. HortScience, 51(7), 793-798. DOI 10.21273/HORTSCI.51.7.793.
Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3). 31. DOI 10.3390/agronomy8030031.
Ibraheim, S. K. A., and Mohsen, A. A. M. (2015). Effect of Chitosan and Nitrogen Rates on Growth and Productivity of Summer Squash Plants. Middle East Journal of Agriculture Research Research, 04(04), 673–681. https://www.semanticscholar.org/paper/Effect-of-Chitosan-and-Nitrogen-Rates-on-Growth-and-Ibraheim-Mohsen/7af2d2537300ef67a5e3f86ca1079ec809ba9ec9.
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., and Shabala, S. (2015). Salicylic acid in plant salinity stress signaling and tolerance. Plant Growth Regulation, 76(1), 25–40. DOI 10.1007/s10725-015-0028-z.
Kazemi, M. (2014). Foliar Application of Salicylic Acid and Methyl Jasmonate on Yield, Yield Components and Chemical Properties of Tomato. Jordan Journal of Agricultural Sciences, 10(4). https://journals.ju.edu.jo/JJAS/article/view/7777.
Khan, M.I., M. Fatma, T.S. Per, N.A. Anjum, and N.A. Khan. (2015). Salicylic -induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6:1–17. DOI 10.3389/fpls.2015.00462.
Krantev, A., Yordanova, R., Janda, T., Szalai, G., and Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of plant physiology, 165(9), 920-931. DOI 10.1016/j.jplph.2006.11.014.
Metwally, A., Youssef, S., El-Miniawy, S. M., and Ragab, M. E. (2013). Effect of foliar spraying of salicylic acid on growth, yield and quality of cold stored strawberry plants. J. Biol. Chem. Environ. Sci., Vol. 8, pp. 1–17. http://research.asu.edu.eg/handle/123456789/1976.
Mohamed, R.A., Abdelbaset, A.k., Abd-Elkader, D.Y. (2017). Salicylic acid effects on growth, yield and fruit quality of strawberry cultivars. Journal of Medicinally Active Plants, 6(2), 1-11.https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1120&context=jmap.
Mondal, M. M. A., Puteh, A. B., and Dafader, N. C. (2016). Foliar application of chitosan improved morpho-physiological attributes and yield in summer tomato (Solanum lycopersicum). Pakistan Journal of Agricultural Sciences, 53(2), 339–344. DOI 10.21162/PAKJAS/16.2011.
Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M. R., and Ashrafuzzaman, M. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6(5), 918-921. https://www.researchgate.net/publication/260347226.
Nada, M. M., & El-Hady, A. (2019). Influence of Salicylic Acid on Cucumber Plants under Different Irrigation Levels. Journal of Plant Production, 10(2), 165-171. DOI 10.21608/jpp.2019.36246.
Page A.M.L., Daunay M.C., Aubriot X., Chapman M.A. (2019). Domestication of Eggplants: A Phenotypic and Genomic Insight. In: Chapman M. (eds) The eggplant Genome. Compendium of Plant Genome. Springer, Cham. DOI 10.1007/978-3-319-99208-2_12.
Pandey, R. (2015) Mineral Nutrition of Plants. In: Bahadur B., Venkat Rajam M., Sahijram L., Krishnamurthy K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. DOI 10.1007/978-81-322-2286-6_20.
Plazas, M., Prohens, J., Cuñat, A. N., Vilanova, S., Gramazio, P., Herraiz, F. J., et al. (2014). Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. Int. J. Mol. Sci. 15, 17221–17241. DOI 10.3390/ijms151017221
Qiu, Y., Guan, S. C., Wen, C., Li, P., Gao, Z., and Chen, X. (2019). Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC plant biology, 19(1), 528. DOI 10.1186/s12870-019-2151-x.
Raigón, M. D., Prohens, J., Muñoz-Falcón, J. E., and Nuez, F. (2008). Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. J. Food Comp. Anal. 21, 370–376. DOI 10.1016/j.jfca.2008.03.006
Vicente, R.S.M., and Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of experimental botany, 62(10), 3321-3338. DOI 10.1093/jxb/err031
Sahu, G. K. (2013). Salicylic acid: Role in plant physiology and stress tolerance. In Molecular, stress physiology of plants (pp. 217-239). Springer, India. DOI 10.1007/978-81-322-0807-5_9.
Schneider, A., Godin, C., Boudon, F., Demotes-Mainard, S., Sakr, S., and Bertheloot, J. (2019). Light regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars and hormones. Frontiers in plant science, 10, 1296. DOI 10.3389/fpls.2019.01296
Shakirova F.M. (2007) Role of Hormonal System in the Manifestation of Growth Promoting and Antistress Action of Salicylic Acid. In: Hayat S., Ahmad A. (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht. DOI 10.1007/1-4020-5184-0_4
Souri, M.K., and Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6. 26. DOI 10.1186/s40538-019-0169-9.
Ullio, L. (2003) Eggplant Growing. Agfact H 8.1.29. third edition. Available at: www. Agric, Nsw. Gov. Au. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/126292/Eggplant-Growing-Agfact-H8.1.29.pdf.
Xu, C., and Mou, B. (2018). Chitosan as soil amendment affects lettuce growth, phytochemical efficiency and gas exchange. HortTechnology, 28(4), 476-480. DOI 10.21273/HORTTECH04032-18
Youssef, R. A., El-Azab, M. E., Mahdy, H. A., Essa, E. M., and Mohammed, K. A. (2017). Effect of salicylic acid on growth, yield, nutritional status and physiological properties of sunflower plant under salinity stress. International Journal of Pharmaceutical and Phyto pharmacological Research, 7(5), 54-58.https://eijppr.com/en/article/effect-of-salicylic-acid-on-growth-yield-nutritional-status-and-physiological-properties-of-sunflower-plant-under-salinity-stress.